
Reentrant kmalloc for any context

Alexei Starovoitov

Existing slab wrappers

- bpf_mem_alloc
- kretprobe objpool
- ...

BPF's preallocated past...

- 11 years ago the only BPF use cases were networking and tracing
- tracing context is unknown. NO kmalloc
- networking context is typically BH. Ok to kmalloc

- By default BPF maps are preallocated
- all elements of a hash table are preallocated in per-cpu freelists
- Ex: max_entries=10k hashtab on 100 cpus will have 100 elements in each per-cpu freelist
- push/pop can happen on different cpus, simple round robin stealing from other cpu-s
- freed elements are instantly reused
- high performance

- Hash map rarely used at full capacity to maintain O(1) performance
- Lots of preallocated memory is unused

BPF's preallocated past...

- networking could use BPF_F_NO_PREALLOC to mitigate memory waste
- kmalloc(GFP_ATOMIC), call_rcu() in free path

- can have memory spikes
- performance could be several times slower depending on usage
- rarely used in practice
- cannot be used when tracing and networking share a map

bpf_mem_alloc to the rescue

- kmalloc-like per-cpu buckets {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}
- NMI-safe per-cpu freelists with low/hi watermark

- average of 64 per-cpu elements for smaller buckets
- Once below low watermark raise irq_work to refill
- High performance
- Global bpf_mem_alloc with buckets
- kmem_cache_create()-like bpf_mem_alloc for fixed size elements

bpf_mem_alloc issues

- allocations from irq disabled context are unpredictable
- irq_work_queue() is/was broken on some arm64
- Memory is pinned in free list for bpf system only

- each bpf hash map uses its own one size bpf_mem_alloc instance
- Rest of bpf uses global bpf_mem_alloc

- Not as bad memory waste as full prealloc, but
- global bpf_mem_alloc mirrors kmalloc-* slubs
- fixed size bpf_mem_allocs mirror kmem_cache_create-d slubs
- merging is needed

- Do not want to reinvent slub features one by one

bpf_mem_alloc issues

- async refill is ok for small sizes
- 1k+ objects have infeasible trade-off :

- either excessive memory waste
- or sporadic allocation failures

- kmalloc is synchronous. Good.

Synchronous kmalloc stack

- kmalloc
- slab_alloc_node

- cmpxchg16
- __slab_alloc

- new_slab
- alloc_pages

- rmqueue_pcplist
- __rmqueue

- wakeup_kswapd // when __GFP_KSWAPD_RECLAIM is set

Synchronous kmalloc stack

- kmalloc
- slab_alloc_node

- cmpxchg16
- __slab_alloc

- new_slab
- alloc_pages

- rmqueue_pcplist
- __rmqueue

- wakeup_kswapd // when __GFP_KSWAPD_RECLAIM is set

try_alloc_pages cover these steps

try_alloc_pages implementation details

- rmqueue_pcplist
- already spin_trylock(). No changes were necessary.

- __rmqueue
- convert spin_lock_irqsave to spin_trylock_irqsave if (alloc_flags & ALLOC_TRYLOCK)

- try_charge_memcg
- convert local_lock_irqsave to localtry_trylock_irqsave if (gfpflags_allow_spinning(gfp_mask))

static inline bool gfpflags_allow_spinning(const gfp_t gfp_flags)

{

 /*

 * !__GFP_DIRECT_RECLAIM -> direct claim is not allowed.

 * !__GFP_KSWAPD_RECLAIM -> it's not safe to wake up kswapd.

 * All GFP_* flags including GFP_NOWAIT use one or both flags.

 * try_alloc_pages() is the only API that doesn't specify either flag.

 *

 * This is stronger than GFP_NOWAIT or GFP_ATOMIC because

 * those are guaranteed to never block on a sleeping lock.

 * Here we are enforcing that the allocation doesn't ever spin

 * on any locks (i.e. only trylocks). There is no high level

 * GFP_$FOO flag for this use in try_alloc_pages() as the

 * regular page allocator doesn't fully support this

 * allocation mode.

 */

 return !!(gfp_flags & __GFP_RECLAIM);

}

Reentrant kmalloc for any context

- kmalloc
- slab_alloc_node

- cmpxchg16
- __slab_alloc

- new_slab
- alloc_pages

- rmqueue_pcplist
- __rmqueue

try_alloc_pages cover these steps

try_kmalloc

Plan so far

- in get_freelist()... support __CMPXCHG_DOUBLE only (for now)
- punt on try-locking bit_spin_lock to later
- essentially no changes in fast path

- s/local_lock/localtry_trylock/ in slow path
- if pfmemalloc mismatch return ENOMEM
- in ___slab_alloc() return ENOMEM when trylock fails

- ignore node mismatch ? pretend to be NUMA_NO_NODE
- don't use get_partial()

- new_slab() -> try_alloc_pages()
- kmem_cache_debug() will work as-is with trylock

